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ABSTRACT

A method is shown for the study of the creep rate dependence of metals on
ths applied stress under the condition of constant structure. The method was
applied to pure aluminum and to dilute solid solution alloys of Mg, Cu, Ge, Zn,
and Ag in aluminum. The results revealed that the applied stress and the creep
rate are related by the equation & = O e-m‘/" sinh BT ., B was found to
be independent of the creep structure for a given material; a linear relation-
ship was found to exist between .I5 and the percent of alloying addition to
alumimm for a giver solute element. Furtherzcra 4 is a function of the low

temperature solid solution strangthening of the alloys.
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INTRODUCTION

It is customary to plot the secondary creep rate as a function of the
initial creep stress in order to evaluate the stress-creep rate relationship
in constant load creep tests. The analyses based on such data have not been
particularly rewarding insofar as no lucid correlation with reacticvn rate theory
is achieved by this technique. The basic reasons for this failure have long been
suspected and recently the failure of this approach was more clearly revealed (1).

In spite of the continuously increasing true stress over the primary stage
of creep, the creep rate continuously decreases. Obviously the structural changes
that occur are responsible for the observed increase in creep resistance during
creep. If therefore the same structures were obtained at the secondary stage of
creep independent of the applied ut-aess, the correlation between stress and second-
ary creep rate would be significant for that structure. But if the structures
that are developed depend on the creep stress, nc unique correlation between the
secondary creep rates and the initiasl stress can be expected from tnmis type of
analysis.

The results of recent investigations (1-4) have shown that for h_:h temper-
ature creop of non-precipitation hardening systems

e = {(8.7%) (1)

where

6. te BH/AT

= temperature-compensated time
t = time

T = absolute temperature

Re gas constant

AH e activation ensrgy

€ = creep strain

a
]

initial creep stress in a constx i losd teat
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Typical examplas of this correlatior ure stiswn in Fig. 1. The validity
of Bquation 1. was further verified by observing tha: tho metsllographic and
X=-ray subgrain structures () are functions of the temperatumm-cumjpensated time
© for a given creep stress T . Additionai verification 354 was also obtained
by noting that the stress-strain curves at 298°K,which were obtained afte. constant
load creep straining, are functions of © alone. In tbis way it was deminstrated
' that not only the readily revealed subgrain structure, but also such curreatly
unmeasurable struciu.aél changes (such as the mumber and distribution of the dis-
locations in the volume of the grains) are also functions of the temperature-comp—
ensated time. Thus the evidence for the validity of Equation 1 for high temperature
creep is substantial.

The creep rate for a constant load creep test can now be obtained by dif-

farentiating Bquation 1 with respect to time, whences
; \(dB\ _ ¢’ -8HAT

And therefore the secondary creep rate is

P R T T

Lot

: i -&Hy
Es = fo(8:.T) e T (3)

But according to Equation 1 (as shown in Fig. 1) for a constant load test, O
becomes a function of U, alone, and therefore Bquation 3 reduces to

. QM
G = F(&e *7) = F(2) (4)
‘ : arn/p-r
where F 18 some function and £ = &4 € , the 2ener-Holloman
. aw
parameter (5). When the experimentai values of &, e /RT are plotted

against T, over a range of high temperatures a single ourve is obtained as shown

in Pig. 2, thus verifying Bquation 4. But the subgrain structures that are dev—-

(3)

eloped during secondary creep have been shown to vary in a systematic wmay

2ET TV
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with the initial creep stress, Uc . Consequently the experimentally determined

relationship between J. and Z 18 not unique because it also depends on the various
structures that are produced at the secondary stage of creep under different
stresses.

Fortunately a very simple technique is available for estimating the e“fect
of stress on the creep rates of metals for a given structure. If, as previously
proven, (1) a metal is precrept under a stress U, , to a strain €, at any
elevated temperature a definite structure will be produced. An introduction of
a higher stress at this point will cause a rapid change in structure due to the
additional instantaneous plastic strain imposed on the metal. But if the stress
be reducad to a value below T, , after precreep to &,, the structure of the metal
might be expected to initially remain that of the precrept state. For relatively
short times at the lower stresses, therefore, the structure will be expected to
differ only slightly from that obtained at the end of the precreep treatment, the
changes occurring being due to a small amount of creep recovery, some crystal re-
covery, and those changes in structure attending the creep at the lower ctress.
Assuming that these changes are small and thus have a minor effect on the creep
rate, it is then possible to estimate the effect of stress on the creep rate for
a constant structure by a series of tests in which the initial creep stress U,
is reduced to a series of lower stress values following precreep to a given strain
€. Auxiliary tests, to be reported at a later date, have shown that the amount
of creep recovery attending complete unloading of the alloys used in this invest-
igation is indeed negligible and therefore this factor does not contribute in any
material way to possible changes in structure upon reducing the creep stress.
Furthermore any change in structure due to crystal recovery or creep straining at
the new stress should be reflected in appropriate changes of the creep rate with

strain. Inasmch as the strain-time curves obtained in the investigations to be

B 1 e e
—




outlined in this report were reasonably linear over small strains following a
reduction in stress, it seemed apnropriate to assume that crystal recovery and
the auxiliary structural changes attending the small additional creep had at

most a negligible effect on the interpretation of the data.

MATERIALS AND TECHNIQUES

’ The solid solution aluminum alloys that are listed in Table I were used in

I the present investigation. Sheets of these alloys were homogenized, cold rolled ‘
from C.100 to 0.070 inches in thickness and then recrystallized to about the same
grain size. The creep specimens were salected with their tensile axes in the

' rolling direction. All creep tests were conducted under :onstant lo4d conditions.

i The strain wes measured to ¢ 0.0001 and the initial creep stress was measured to
4+ 20 psi.
RESULTS AND DISCUSSION
P A. High Purity Aluminum
A typical example of one series of tests on high purity alumimum is shown ‘

in Fig. 3. Bach specimen was precrept to an engineering strain of 25% at an

initial stress of U. = 3400 psi. Small differences in creep rates due to unknown
sampling protlems were noted in the creep curves for the various specimens. When

an engineering strain of 25% was reached the load was reduced to give new reduced
engineering stresses of 3,200 psi etc. to 2,500 psi as chown in the figure. Although
difficulties were anticipated in determining the instantaneous creep rate im-

mediately after reducing the stress, all of the creep curves exhibited rather good '
straight lines over the initial intervals of creep following reduction of the

stress. Consequently fairly reliable initial creep rates could be obtained fer

the various reduced stresses.

The data shown in Figure 3 were analyzed in terms of true stresses and true
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TABLE I
Chemical es and Orain Sisze of Alloys
Alloying Atomic drain Size Chemical Analyses (wt. § impurities) ,
Klement Percent Diam, mm. S1 Fo Cu Mg - Mn 1
f
! Alumimm 0.21 .003  .003 .006  .OOL
(99.987)
Magnesium 0.554 0.25 .003 003  .007
1.097 - 0.28 .004 .004 .007 =
1.617 0.26 003 .004  .006 !
—— i
com 0.101 0.” .003 o003 .0000 Owl
0.82 . 0.30 0003 .OOL tw% 'wl
|
| Zinc 0.755 0.26 004 «005 .006 .001 t
1.616 0.26 .003 .005 .00'7 0001 t
Germanium 0.082 0.27 .003 005 007 .00l ‘
0.145 0.26 .003 006  ,007 .00l :
¥
Silver 0.100 0.29 .003 «005 «007 .001
0.194 0.29 003 006  .007 .001
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~488tic =ir.in rates according to the following:

(J - ioad - L _ L A. - T ((
- —_—C T Re—= = V¢
The’.ntaneous Area A A. A T.

mhe g P 18 the enginecring plastic strain of the test, T is the engineering

strec. . and (
é de d ((n /l‘) d i&(l-&-@,)} (6)

ot d+ dt ‘
where ¢ . the ins*arn’'aneous true strain rate after unloading to the lower

stress 17 ;2c,

S!-c> Lir recreen ccnditions were the same, theT-¢ relationship refers to
a gl.~« structural state. This type o correlation was attempted for other
structural siate- developed by various precreep conditions; creep tests were
j~iformed i initial ereep stresses of 3400 psi and 422°K to strains of € = 9%
and 15% t~ . Jtain different crecp structures at which point the stresses were
again decrease arnpropriately and the relationship between the instantaneous true
stress and instantaneous true creep rate was determined. Furthermore, another '
tempuratnre of wsst, 530°X, to strains of €p = 9% and 25% under an engineering
stress of vy, - J00C psi was also used. The creep rate dependence on stress for
.uese various structures is illustrated in Fig. 4. Several significant deductions
aré immediately apparent from these data.

l. Ths true creep rate-true stress relationship for a constant structure is
given by

¢ - s 10%7 .« 5" e® (7)

where lE is merely the slope of the linear T versus log & curves of Fig. 4
divided by the constant, 2,303. Since the creep rate must vanish when the stress
T is reduced to zero, it appesrs that equation 7 can only be valid at high

stresses and therefore the general :slationship is rrobably

£ = S" sinh BO (8)
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2+ Furthermore the data of Fig. 4 reveal in two separate ways that the
value of B is independent of the structural changes induced by the precreep
treatments. In previous investigations (3) it was shown that the structures
of aluaimin crept to the same strains under different stresses were substantially
different. But since the values of B deduced from Fig. 4 are independent of the
pracreep stress, J. , B must ve independent nf the structure. In addition it is
now well documented (3) that the structure of aluminum changes greatly with creep
strain for a given creep stress. Consequently the observations that B is a
constant over the ranges from 9.0% to 25% precreep strain prove conclusively
that B is independent of structure.

3. PFormal applications of reaction rate theory to the creep of metals

suggest (6) that the creep rate should be approximated by tha relationship

£ = X e-AH/RT Sinh Q_g: (9)
T

where 5 is related to the cross-sectional area of a dislocation times the dis-
tance it must be moved under stress in order to be activated. But the data given
in Fig. 4 show that T and not S.'; is linearly related to the logaritim of the
strain rata. Two additional proofs that the creep phenomeuon depends on 0 and
not g have already been presented in the two sets of investigations leading to
the formulation of Bquations 1 and 3 respectively. Since the assumption that @
might increase linearly with the absolute temperature is wholely untenable, the

combinations of Equations 2 and 8 demand that the creep strain rate be given by

; -BH/
E= Se AT sinh BT (10)

where now both 8H and B are known to be independent of the structure that is
developed during creep; therefore all of the structural changes that occur during

creep are incorporated in the parameter S .



1

Several major factors must be resolved before a better understanding of the
phenomenon of creep can be formulated. Perhaps the most significant of these is
the unexpected result that the hyperbolic sine term contains not -‘1'-_'- but only T .
This fact arises from the basic details of the activation process for creep. The
second factor is associated with the S parameter. Although from a purely
phenomenological viewpoint, a comparison of Equations 2 and 10 reveals that S
is merely a fuaction of the temperature-compensated time (or the strain) and the
stress, J. , the parameter S must eventually be correlated with the significant
structures that determine the entropy, frequency and shear strain per unit activ-
ation. Furthermore it is now known that Bquation 10 is valid only above about

0«45 of the melting temperature (2,3,7)

whereas substantial creep can yet take
place at lower temperatures. Perhaps additional complicating factors enter the
low temperature creep phenomenon.

B. BEffect of Alloying Elements

The effect of various alloying elements on B was evaluated by the pro-
cedures previously described for pure aluminum for the various alloys identified
in Table I. All original data on these alloys are recorded ir the graphs of the
appendix. The data of Fig. 5 reveal that -{b- increases almost linearly with atomic
percent of the solute element. Furthermore those elements that were previously
shown to have the greatest effect on solid solution strengthening at low temp-
eratures (8) also appear to exhibit the greatest effect on inhibiting creep
insofar as they exhibit the greatest value of -é . The excellent correlation
betwaen the tensile deformation strength at S percent strain at 194°K and _é for
creep is shown in Fig. 6. Perhaps this correlation arises from the fact that —'-B
as well as low temperature solid solution strengthening are both dependent on the
strain-energy interactions and electronic interactionsbetween solute atoms and

dislocations., The total effect of solute atoms on creep, however, is not neces-
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sarily revealed by the-évalnes; solute atoms might modify the deformation structure

and restrain the necesssry processes that attend creep so 2s to change S .

CONCLUSIONS
l. A method was developed for determining the effect of stress on the creep

rate of metals at constant structures.

2. The equation for the creep rate was found to be
£ = Se “MRT sinh BT
where AH and B are iadependent of the creep structure and Sis a parameter that
depends on structure.
3. Te value of {S increases almost linearly with atomic percent of solute

atoms. Fnrthermore'é is a function of low temperature solid solution strength-
ening.
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